Studi Termokimia Kuantum untuk Derivatif Flavonoid: Perbandingan Stabilitas Energi dan Aktivitas Antiradikal berdasarkan Metodologi DFT/B3LYP

Authors

  • Ahmad Pratama Program Studi Kimia, Universitas Indonesia
  • Lilis Kurniawati Program Studi Kimia, Universitas Indonesia
  • Dwi Handayani Program Studi Kimia, Universitas Indonesia

Keywords:

flavonoid, DFT, B3LYP, quantum thermochemistry, antioxidant

Abstract

Flavonoids are a class of natural phenolic compounds with broad biological activities, particularly as antioxidants. Understanding the mechanism and efficiency of the antiradical activity of flavonoids can be achieved through the density functional theory (DFT) approach, which enables the analysis of bond energies and molecular reactivity parameters. This study employed the DFT/B3LYP method with the 6-31G(d,p) basis set to evaluate the energy stability and antiradical activity of several flavonoid derivatives. The analysis focused on ionization energy, electron affinity, HOMO–LUMO energy, and hydrogen atom donation potential. The computational results indicated that hydroxyl group substitution at specific positions influences antiradical capacity through resonance stabilization and reduction of O–H bond energy. Derivatives bearing hydroxyl groups at the ortho and para positions tend to be more stable and possess higher antiradical potential compared to other substitutions. These findings reinforce the role of DFT as a predictive tool for understanding the structure–antioxidant activity relationship in flavonoids, which is valuable for the development of bioactive compounds in pharmaceutical and food applications.

References

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913

Foti, M. C. (2007). Antioxidant properties of phenols. Journal of Pharmacy and Pharmacology, 59(12), 1673–1685. https://doi.org/10.1211/jpp.59.12.0010

Galano, A., & Alvarez-Idaboy, J. R. (2013). A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. Journal of Computational Chemistry, 34(28), 2430–2445. https://doi.org/10.1002/jcc.23387

Klein, E., Lukes, V., & Ilcin, M. (2007). DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics, 336(1), 51–57. https://doi.org/10.1016/j.chemphys.2007.04.006

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation‐energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785

Parr, R. G., & Yang, W. (1995). Density-functional theory of atoms and molecules. Oxford University Press. https://doi.org/10.1093/oso/9780195092769.001.0001

Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933–956. https://doi.org/10.1016/0891-5849(95)02227-9

Trouillas, P., Fagnere, C., Lazzaroni, R., Calliste, C., Marfak, A., & Duroux, J. L. (2006). A theoretical study of the conformational behavior and electronic structure of quercetin. Food Chemistry, 97(4), 679–688. https://doi.org/10.1016/j.foodchem.2005.05.034

Valgimigli, L., & Pratt, D. A. (2012). Antioxidants in chemistry and biology. Chemical Communications, 48(40), 6233–6241. https://doi.org/10.1039/c2cc30155h

Wright, J. S., Johnson, E. R., & DiLabio, G. A. (2001). Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123(6), 1173–1183. https://doi.org/10.1021/ja002455u

Downloads

Published

2025-06-22

How to Cite

Pratama, A., Kurniawati, L., & Handayani, D. (2025). Studi Termokimia Kuantum untuk Derivatif Flavonoid: Perbandingan Stabilitas Energi dan Aktivitas Antiradikal berdasarkan Metodologi DFT/B3LYP. Pure Chemistry Research, 1(1), 11–14. Retrieved from https://ejournal.publine.or.id/index.php/purechem/article/view/266