Primary Journal of Multidisciplinary Research Vol. 1 No. 5, October 2025, pp. 173-177

E-ISSN 3090-0972

Internet of Things (IoT): Masa Depan Kehidupan Serba Terkoneksi

Nevy Gautama ^{1*}, Yura Yunita ¹, Ajrin Hidayat ¹ ¹ Program Studi D3 Tehnik Informatika Universitas Bumigora NTB Email: Nevygau@gmail.com *
*Corresponding author

ARTICLE INFO

ABSTRACT

Article history

Received September 28, 2025 Revised October 8, 2025 Accepted October 13, 2025 Published October 30, 2025

Keywords

Internet of Things Digital Technology Connectivity Cybersecurity Smart City

License by CC-BY-SA Copyright © 2025, The Author(s). The Internet of Things (IoT) is one of the most significant milestones in modern technological development, enabling physical devices to connect to the internet and communicate with each other automatically. The emergence of IoT introduces a new paradigm in everyday life, from smart homes and smart cities to integrated transportation systems and digital healthcare services. This integration not only enhances convenience but also improves efficiency in terms of energy, time, and cost. In the industrial sector, IoT is a key driver of Industry 4.0, where automation and real-time data analysis enhance productivity and product quality. In healthcare, IoT applications allow remote patient monitoring through wearable devices connected to medical systems, supporting faster and more effective healthcare services. Meanwhile, in agriculture, IoT contributes to precision farming by monitoring soil moisture, temperature, and nutrient requirements, ultimately increasing crop yields in a sustainable manner. Nevertheless, the development of IoT also presents serious challenges, particularly regarding cybersecurity, data privacy, and the readiness of network infrastructure across different regions. Without proper regulations and clear security standards, IoT utilization may lead to significant risks. Therefore, collaboration among governments, industries, and academia is necessary to design sustainable, secure, and inclusive IoT development strategies. With the right approach, IoT has the potential to become one of the main pillars in building a digital ecosystem that supports a fully connected life in the future.

How to cite: Gautama, N., Yunita, Y, & Hidayat, A. (2025). Internet of Things (IoT): Masa Depan Kehidupan Serba Terkoneksi. Primary Journal of Multidisciplinary Research, 1(5), 173-177. doi: https://doi.org/10.70716/pjmr.v1i4.294

PENDAHULUAN

Perkembangan teknologi informasi dan komunikasi dalam dua dekade terakhir telah memberikan perubahan besar terhadap cara manusia berinteraksi, bekerja, dan menjalani kehidupan sehari-hari. Salah satu inovasi yang menonjol adalah Internet of Things (IoT), sebuah konsep yang memungkinkan berbagai perangkat fisik terhubung ke jaringan internet untuk saling berkomunikasi dan bertukar data. IoT menjadi fenomena global yang tidak hanya hadir dalam ranah teknologi, tetapi juga merambah ke sektor ekonomi, sosial, kesehatan, pendidikan, dan lingkungan. Transformasi ini menandai era baru digitalisasi di mana kehidupan manusia semakin bergantung pada teknologi cerdas yang saling terkoneksi (Ashton, 2009).

IoT dapat didefinisikan sebagai jaringan perangkat yang dilengkapi dengan sensor, perangkat lunak, dan teknologi lain yang memungkinkan pertukaran data tanpa campur tangan manusia secara langsung. Konsep ini mengubah cara kerja teknologi tradisional yang sebelumnya bergantung pada input manual menjadi lebih otomatis, efisien, dan responsif. Melalui konektivitas ini, perangkat sederhana seperti lampu, pendingin ruangan, hingga kendaraan, dapat dikendalikan dan dipantau dari jarak jauh. Kehadiran IoT membuka peluang besar bagi pengembangan sistem pintar dalam berbagai bidang kehidupan manusia (Al-Fuqaha et al., 2015).

Dalam sektor kesehatan, IoT memiliki peran penting dalam mendukung pelayanan berbasis digital, seperti penggunaan perangkat wearable yang mampu memantau detak jantung, kadar gula darah, dan aktivitas fisik seseorang. Data yang dikumpulkan dapat langsung terhubung dengan tenaga medis sehingga mempercepat diagnosis dan pengambilan keputusan. IoT juga memungkinkan layanan telemedicine berkembang lebih cepat, terutama pada masa pandemi COVID-19, ketika masyarakat membutuhkan layanan kesehatan jarak jauh (Islam et al., 2015). Dengan demikian, IoT berkontribusi dalam meningkatkan kualitas hidup sekaligus memperluas akses layanan kesehatan.

Selain itu, dalam bidang pertanian, IoT mendukung konsep pertanian presisi yang memungkinkan petani memantau kelembapan tanah, suhu udara, dan kebutuhan nutrisi tanaman secara real-time. Hal ini membantu meningkatkan produktivitas sekaligus menjaga keberlanjutan lingkungan. Teknologi sensor dan drone yang terintegrasi dengan IoT dapat membantu petani dalam mengoptimalkan penggunaan air dan pupuk, sehingga efisiensi produksi meningkat secara signifikan. Dengan dukungan data yang akurat, pengambilan keputusan dalam pengelolaan pertanian menjadi lebih tepat sasaran (Wolfert et al., 2017).

Sementara itu, dalam sektor transportasi, IoT memfasilitasi terciptanya sistem lalu lintas cerdas yang mampu memantau kondisi jalan, mengatur sinyal lalu lintas, serta mendukung pengembangan kendaraan otonom. Penerapan teknologi ini diharapkan dapat mengurangi kemacetan, meningkatkan keselamatan, dan menekan angka kecelakaan lalu lintas. Konsep smart transportation yang didorong oleh IoT juga berpotensi mengurangi emisi karbon dengan mendorong penggunaan kendaraan listrik yang terhubung dengan sistem energi pintar (Dixit et al., 2019).

IoT juga menjadi tulang punggung pembangunan kota pintar (smart city), di mana berbagai layanan publik, seperti pengelolaan energi, air, sampah, dan keamanan, dapat diintegrasikan melalui sistem digital. Dengan adanya konektivitas IoT, pemerintah dapat memantau kondisi kota secara real-time, mengoptimalkan penggunaan sumber daya, dan meningkatkan pelayanan publik. Penerapan smart city telah menjadi tren global yang diadopsi oleh berbagai negara maju maupun berkembang dalam upaya mewujudkan keberlanjutan dan kualitas hidup masyarakat yang lebih baik (Zanella et al., 2014).

Namun, di balik berbagai peluang tersebut, pengembangan IoT juga menghadapi tantangan yang cukup serius. Isu keamanan siber dan privasi data menjadi perhatian utama karena miliaran perangkat yang saling terhubung berpotensi menjadi celah bagi tindak kejahatan digital. Serangan siber terhadap perangkat IoT dapat menyebabkan kerugian besar, baik secara individu maupun institusi. Selain itu, keterbatasan infrastruktur jaringan di beberapa wilayah, terutama di negara berkembang, menjadi hambatan dalam implementasi IoT secara merata. Hal ini menuntut adanya kebijakan strategis, regulasi, serta standar keamanan yang jelas untuk mendukung pengembangan IoT yang aman dan berkelanjutan (Weber & Studer, 2016).

Dengan perkembangan yang begitu cepat, IoT diprediksi akan menjadi salah satu pilar utama dalam revolusi digital masa depan. IoT bukan hanya sebuah tren teknologi, melainkan kebutuhan nyata dalam mendukung berbagai sektor kehidupan manusia. Oleh karena itu, penelitian mengenai potensi, manfaat, tantangan, serta arah pengembangan IoT sangat penting dilakukan untuk memastikan bahwa teknologi ini dapat dimanfaatkan secara optimal dan inklusif. Dengan sinergi antara pemerintah, industri, akademisi, dan masyarakat, IoT diharapkan dapat menjadi solusi inovatif dalam menghadapi kompleksitas kehidupan modern di era digital.

METODE PENELITIAN

Penelitian ini menggunakan pendekatan deskriptif kualitatif dengan tujuan untuk memberikan gambaran mendalam mengenai perkembangan Internet of Things (IoT) serta implikasinya terhadap berbagai sektor kehidupan masyarakat. Pendekatan ini dipilih karena mampu mengkaji fenomena teknologi secara komprehensif melalui analisis literatur, studi kasus, dan data sekunder. Penelitian deskriptif kualitatif memungkinkan peneliti untuk mengeksplorasi tren, peluang, dan tantangan IoT dengan sudut pandang yang lebih luas dan mendalam (Creswell & Poth, 2018).

Sumber data utama dalam penelitian ini berasal dari literatur sekunder, berupa jurnal ilmiah, buku akademik, laporan industri, dan artikel teknologi yang relevan dengan IoT. Pemilihan sumber literatur dilakukan dengan kriteria publikasi minimal lima tahun terakhir agar data yang diperoleh tetap relevan dengan perkembangan terkini. Selain itu, data sekunder dari organisasi internasional seperti International Telecommunication Union (ITU) dan World Economic Forum juga digunakan untuk memperkuat analisis (ITU, 2021).

Proses pengumpulan data dilakukan dengan menggunakan teknik studi pustaka. Peneliti menelusuri berbagai database akademik seperti IEEE Xplore, ScienceDirect, dan Google Scholar untuk menemukan literatur yang sesuai dengan topik penelitian. Selanjutnya, setiap literatur dianalisis untuk mengidentifikasi konsep utama, tren perkembangan, serta tantangan yang dihadapi dalam penerapan IoT. Proses ini bertujuan untuk menghasilkan sintesis pengetahuan yang dapat menggambarkan perkembangan IoT secara lebih komprehensif (Snyder, 2019).

Metode analisis yang digunakan adalah analisis konten tematik, di mana peneliti mengelompokkan data berdasarkan tema-tema tertentu seperti penerapan IoT dalam sektor kesehatan, industri, transportasi, pertanian, serta tantangan keamanan dan privasi. Analisis konten memungkinkan peneliti untuk mengidentifikasi pola, kesenjangan penelitian, serta rekomendasi pengembangan di masa depan. Proses analisis ini dilakukan secara sistematis dengan cara membaca, mengkoding, dan menyimpulkan tema yang relevan (Vaismoradi & Snelgrove, 2019).

Untuk meningkatkan validitas data, peneliti menggunakan teknik triangulasi sumber, yaitu dengan membandingkan informasi dari berbagai literatur yang berbeda. Data dari laporan industri dibandingkan dengan hasil penelitian akademik untuk melihat konsistensi dan akurasi informasi. Selain itu, peneliti juga menggunakan data statistik dari lembaga resmi untuk mendukung temuan deskriptif. Teknik triangulasi ini bertujuan agar hasil penelitian lebih objektif dan dapat dipertanggungjawabkan secara akademis (Patton, 2015).

Tahap berikutnya adalah melakukan interpretasi hasil analisis, di mana peneliti menghubungkan temuan literatur dengan teori dan konsep yang relevan. Interpretasi ini difokuskan pada bagaimana IoT memengaruhi kehidupan sehari-hari, peluang pemanfaatan teknologi di berbagai sektor, serta potensi risiko yang menyertainya. Dengan pendekatan ini, penelitian tidak hanya mendeskripsikan perkembangan IoT, tetapi juga memberikan wawasan kritis mengenai arah masa depan teknologi tersebut (Yin, 2018).

Secara keseluruhan, metode penelitian ini dipilih karena mampu menghadirkan gambaran yang mendalam dan luas mengenai Internet of Things. Dengan pendekatan deskriptif kualitatif, analisis konten tematik, serta validasi melalui triangulasi sumber, penelitian ini diharapkan dapat memberikan kontribusi teoritis maupun praktis bagi pengembangan IoT. Hasil penelitian nantinya tidak hanya bermanfaat bagi dunia akademik, tetapi juga bagi pembuat kebijakan dan praktisi industri dalam merumuskan strategi yang efektif untuk mengoptimalkan pemanfaatan IoT di masa depan.

HASIL DAN PEMBAHASAN

Hasil penelitian mengenai perkembangan Internet of Things (IoT) menunjukkan bahwa teknologi ini telah memberikan dampak nyata pada berbagai sektor kehidupan. Data dari International Data Corporation (IDC) memperkirakan jumlah perangkat IoT yang terhubung akan mencapai lebih dari 29 miliar unit pada tahun 2030, yang mencerminkan pesatnya adopsi teknologi ini di seluruh dunia (IDC, 2020). Penerapan IoT telah membawa efisiensi dalam aktivitas sehari-hari, mulai dari penggunaan perangkat rumah pintar, sistem transportasi berbasis sensor, hingga perangkat wearable di bidang kesehatan. Hal ini membuktikan bahwa IoT tidak lagi sekadar konsep, melainkan sebuah ekosistem teknologi yang secara aktif mengubah cara manusia berinteraksi dengan lingkungannya.

Di bidang industri, IoT menjadi tulang punggung dalam implementasi Industry 4.0, di mana sensor, big data, dan kecerdasan buatan bekerja secara sinergis untuk meningkatkan produktivitas serta mengurangi biaya operasional. Menurut penelitian yang dilakukan oleh Lee, Bagheri, dan Kao (2015), IoT mendukung terciptanya sistem manufaktur cerdas yang mampu melakukan prediksi kerusakan mesin, pemeliharaan berbasis data, serta otomatisasi produksi. Dengan demikian, penerapan IoT dalam sektor industri tidak hanya mempercepat proses produksi tetapi juga mampu menciptakan model bisnis baru yang lebih efisien dan kompetitif.

Selain itu, penerapan IoT di sektor kesehatan menunjukkan hasil yang sangat positif. Perangkat medis berbasis IoT, seperti smartwatch dan sensor kesehatan, mampu memantau kondisi pasien secara real-time dan mengirimkan data langsung kepada tenaga medis. Hal ini terbukti meningkatkan kualitas layanan kesehatan serta memungkinkan deteksi dini terhadap penyakit kronis (Islam et al., 2015). Dengan pemantauan jarak jauh, pasien dapat memperoleh perawatan lebih cepat, sehingga dapat menurunkan angka risiko komplikasi maupun kematian. Inovasi ini menjadi langkah maju dalam upaya menghadirkan sistem kesehatan yang lebih inklusif dan efektif.

Namun, penelitian juga menunjukkan bahwa adopsi IoT masih menghadapi sejumlah tantangan, terutama dalam hal keamanan data dan privasi. Laporan dari European Union Agency for Cybersecurity (ENISA, 2021) mengungkapkan bahwa perangkat IoT rentan terhadap serangan siber karena lemahnya enkripsi data dan kurangnya standar keamanan global. Ancaman ini dapat mengakibatkan pencurian data,

peretasan sistem, hingga gangguan layanan vital seperti listrik atau transportasi publik. Oleh karena itu, pengembangan IoT harus diimbangi dengan kebijakan keamanan siber yang ketat serta regulasi yang jelas agar manfaat teknologi ini dapat dirasakan tanpa mengorbankan aspek keamanan.

Secara keseluruhan, hasil penelitian menunjukkan bahwa IoT memiliki potensi besar dalam mendorong transformasi digital di berbagai sektor kehidupan manusia. Meski tantangan yang dihadapi cukup kompleks, manfaat yang dihasilkan dari penerapan teknologi ini jauh lebih besar apabila dikelola dengan tepat. Perlu adanya sinergi antara pemerintah, industri, dan akademisi untuk merumuskan strategi pengembangan IoT yang berkelanjutan, aman, dan inklusif. Dengan pengembangan yang terarah, IoT diprediksi akan menjadi pilar utama dalam mewujudkan ekosistem digital yang serba terkoneksi di masa depan, sekaligus memperkuat daya saing global di era revolusi industri digital.

KESIMPULAN

Pertama, perkembangan Internet of Things (IoT) telah membuka peluang besar dalam mewujudkan kehidupan yang lebih efisien, terhubung, dan modern. IoT menghadirkan perubahan signifikan dengan menghubungkan perangkat fisik ke internet sehingga dapat berkomunikasi secara otomatis. Kehadiran teknologi ini mampu meningkatkan kualitas hidup manusia melalui berbagai inovasi seperti rumah pintar, transportasi cerdas, serta layanan kesehatan digital. Transformasi ini menunjukkan bahwa IoT tidak hanya sebatas tren teknologi, tetapi juga kebutuhan mendasar dalam era digital.

Kedua, IoT memberikan dampak positif yang luas dalam sektor industri, kesehatan, pendidikan, dan pertanian. Dalam industri, IoT menjadi tulang punggung Industry 4.0 dengan menghadirkan otomatisasi, analisis data real-time, dan peningkatan produktivitas. Di bidang kesehatan, perangkat wearable yang terhubung dengan sistem medis memungkinkan pemantauan pasien secara berkesinambungan. Sementara dalam pertanian, penerapan IoT mendukung konsep pertanian presisi yang mampu mengoptimalkan produksi pangan dengan memanfaatkan data lingkungan secara akurat. Hal ini membuktikan bahwa IoT berkontribusi besar dalam meningkatkan kualitas dan efektivitas di berbagai sektor kehidupan.

Ketiga, meskipun menjanjikan manfaat yang luas, IoT juga membawa sejumlah tantangan serius yang perlu ditangani. Ancaman utama yang muncul adalah terkait isu keamanan data dan privasi, mengingat jumlah perangkat yang terhubung semakin meningkat dari waktu ke waktu. Potensi serangan siber, kebocoran data, dan penyalahgunaan informasi pribadi menjadi masalah yang harus diantisipasi. Selain itu, keterbatasan infrastruktur jaringan di beberapa wilayah juga menjadi penghambat dalam pemerataan akses teknologi ini. Oleh karena itu, kesiapan teknologi harus diimbangi dengan penguatan sistem keamanan dan pembangunan infrastruktur yang memadai.

Keempat, pengembangan IoT membutuhkan kolaborasi lintas sektor, termasuk pemerintah, industri, dan akademisi. Regulasi yang tepat, standar keamanan yang jelas, serta kebijakan yang mendukung inovasi menjadi faktor penting dalam keberlanjutan pemanfaatan IoT. Selain itu, riset dan pengembangan perlu terus dilakukan untuk menghadirkan solusi yang mampu menjawab tantangan di lapangan. Melalui kerjasama yang sinergis, IoT dapat dikembangkan dengan arah yang lebih aman, terukur, dan bermanfaat bagi masyarakat luas.

Kelima, dengan segala peluang dan tantangan yang ada, IoT diprediksi akan menjadi salah satu fondasi utama dalam membangun ekosistem digital global. Kehadirannya bukan hanya mempermudah aktivitas sehari-hari, tetapi juga menjadi motor penggerak dalam menciptakan inovasi baru yang lebih berkelanjutan. Jika dikembangkan secara tepat dan bertanggung jawab, IoT berpotensi menciptakan kehidupan serba terkoneksi yang aman, efisien, dan inklusif. Oleh karena itu, masa depan IoT harus diarahkan pada terciptanya teknologi yang tidak hanya canggih, tetapi juga memberi manfaat nyata bagi kesejahteraan manusia dan pembangunan berkelanjutan.

DAFTAR PUSTAKA

European Union Agency for Cybersecurity (ENISA). (2021). Cybersecurity for IoT. ENISA. https://www.enisa.europa.eu

- IDC. (2020). Worldwide Global DataSphere IoT Devices and Data Forecast, 2019–2023. International Data Corporation. https://www.idc.com
- Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). *The Internet of Things for health care:* A comprehensive survey. IEEE Access, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951
- Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001
- Creswell, J. W., & Poth, C. N. (2018). *Qualitative inquiry and research design: Choosing among five approaches* (4th ed.). SAGE Publications.
- International Telecommunication Union. (2021). *Measuring digital development: Facts and figures* 2021. ITU Publications.
- Patton, M. Q. (2015). Qualitative research & evaluation methods (4th ed.). SAGE Publications.
- Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
- Vaismoradi, M., & Snelgrove, S. (2019). Theme in qualitative content analysis and thematic analysis. Forum: Qualitative Social Research, 20(3). https://doi.org/10.17169/fqs-20.3.3376
- Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed.). SAGE Publications.
- Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). *Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials*, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095
- Ashton, K. (2009). That 'Internet of Things' thing. RFID Journal, 22(7), 97–114.
- Dixit, S., Fallah, S., Montanaro, U., Dianati, M., Stevens, A., Mccullough, F., & Mouzakitis, A. (2019). Autonomous vehicles: Disengagements, accidents and reaction times. PLOS ONE, 14(12), e0227219. https://doi.org/10.1371/journal.pone.0227219
- Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). *The Internet of Things for health care:* A comprehensive survey. *IEEE Access*, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951
- Weber, R. H., & Studer, E. (2016). *Cybersecurity in the Internet of Things: Legal aspects. Computer Law & Security Review*, 32(5), 715–728. https://doi.org/10.1016/j.clsr.2016.07.002
- Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). *Big data in smart farming A review. Agricultural Systems*, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023