Penerapan Algoritma Deep Learning untuk Deteksi Dini Penyakit dari Citra Medis

Authors

  • Muhammad Munadi Tehnik Informatika, Universitas AMIKOM Yogyakarta

DOI:

https://doi.org/10.70716/jocsit.v1i2.259

Keywords:

deep learning, medical images, early detection, convolutional neural network, disease diagnosis

Abstract

Advances in artificial intelligence technology, particularly in the field of deep learning, have made significant contributions to medical image processing for the early detection of various diseases. This study aims to apply deep learning algorithms, specifically Convolutional Neural Networks (CNNs), in the process of classifying and identifying diseases through the analysis of medical images such as X-rays, MRIs, and CT scans. The use of CNNs enables automatic and efficient feature extraction, thereby improving the accuracy of disease detection compared to conventional methods. The dataset used consists of thousands of medical images that have been manually classified by medical professionals. The model training process was carried out using transfer learning techniques using pre-trained architectures such as VGG16 and ResNet50. Performance evaluation was carried out by measuring the values of accuracy, precision, recall, and F1-score. The results showed that the developed CNN model was able to achieve a detection accuracy level of up to 95.3% on the test dataset. The application of this technology is expected to support computer-based diagnostic systems (CDI) as an aid for medical personnel in clinical decision-making. In addition, this system has the potential to accelerate the screening process and reduce the risk of misdiagnosis. These findings indicate that deep learning technology has enormous potential for improving the quality of healthcare services, particularly in the areas of disease prevention and early detection more effectively and efficiently.

Downloads

Download data is not yet available.

References

Abdullah, S. H., Magdalena, R., & Fu'adah, R. Y. N. (2022). Klasifikasi Diabetic Retinopathy Berbasis Pengolahan Citra Fundus Dan Deep Learning. Journal of Electrical and System Control Engineering, 5(2), 84-90.

Bakti, I., & Firdaus, M. (2023). Arsitektur CNN InceptionResNet-V2 Untuk Pengelompokan Pneumonia Chest X-Ray. Jurnal Komputer dan Teknologi, 2(1), 35-42.

Basri, M. Z., Somoal, M. G., & Aji, R. S. (2025). Deteksi Tumor Otak pada Citra Magnetic Resonance Imaging (MRI) Menggunakan Arsitektur MobileNet dengan Optimizer Adam. JEKIN-Jurnal Teknik Informatika, 5(2), 539-550.

Berliani, T., Rahardja, E., & Septiana, L. (2023). Perbandingan Kemampuan Klasifikasi Citra X-ray Paru-paru menggunakan Transfer Learning ResNet-50 dan VGG-16. Journal of Medicine and Health, 5(2), 123-135.

Hildawati, H., Haryani, H., Umar, N., Suprayitno, D., Mukhlis, I. R., Sulistyowati, D. I. D., ... & Judijanto, L. (2024). Literasi Digital: Membangun Wawasan Cerdas dalam Era Digital terkini. PT. Green Pustaka Indonesia.

Khairi, M. Y., Sampetoding, E. A. M., & Pongtambing, Y. S. (2024). Studi Literatur Penerapan Deep Learning dalam Analisis Citra Medis di Indonesia. HealthSense: Journal of Public Health Perspective, 1(1), 15-24.

Mulyasari, C. R., Hadiana, A. I., & Komarudin, A. (2024). DETEKSI PENYAKIT DIABETES, KATARAK DAN GLAUKOMA PADA CITRA FUNDUS RETINA MATA MANUSIA MENGGUNAKAN CNN DENGAN ARSITEKTUR ALEXNET. JUMANJI (Jurnal Masyarakat Informatika Unjani), 8(1), 53-68.

Nova, N., Mulyanti, A., Burhanie, C. S. A. P., Mulyani, L., Nurjanah, R. G., Utami, W., & Sukaesih, N. S. (2025). Systematic Review: Pemanfaatan Deep Learning untuk Diagnosis Penyakit Menggunakan MRI. Jurnal Penelitian Inovatif, 5(2), 839-852.

Nugroho, B., & Puspaningrum, E. Y. (2021). Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 8(3), 533-538.

Prasetio, R. T., & Pratiwi, P. (2015). Penerapan Teknik Bagging pada Algoritma Klasifikasi untuk Mengatasi Ketidakseimbangan Kelas Dataset Medis. Jurnal Informatika, 2(2).

Pratama, S. S., Zahrah, H., Daulah, R. N., & Pratama, G. (2025). Tantangan dan Peluang Kecerdasan Buatan (AI) dalam Manajemen Digital: Kajian Etis dan Strategis di Indonesia. Jejak digital: Jurnal Ilmiah Multidisiplin, 1(4b), 2230-2235.

Rasywir, E., Sinaga, R., & Pratama, Y. (2020). Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN). Jurnal Khatulistiwa Informatika, 22(2), 117-123.

Santhi, N. N. P. P., & Damayanti, N. W. E. (2024). Implikasi Hukum Terhadap Penggunaan Kecerdasan Buatan Dalam Diagnosis Dan Pengobatan Penyakit Dalam Sistem Kesehatan. Innovative: Journal Of Social Science Research, 4(3), 17355-17364.

Sari, N. P. (2024). Analisis Performa Algoritma CNN dalam Klasifikasi Citra Medis Berbasis Deep Learning. Jurnal Komputer, 2(2), 87-92.

Sari, R., Minarno, A. E., & Azhar, Y. (2022). Implementasi Jaringan CNN-LSTM Untuk Deteksi Citra X-Ray Dada Covid-19. Jurnal Repositor, 4(4).

Sitohang, A., Sembiring, A., & Simanjorang, S. (2025). Implementasi Jaringan Syaraf Tiruan Dalam Klasifikasi Citra Medis. Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), 24(1), 64-72.

Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516-525.

Turnando, I., Thamrin, A. F., Firmasnyah, H., Nelesti, N., & Hidayat, T. (2025). Tantangan Dan Peluang Implementasi Ai Di Sekolah Indonesia: Studi Kasus Dan Best Practice: Penelitian. Jurnal Pengabdian Masyarakat dan Riset Pendidikan, 4(1), 1215-1219.

Wiratama, A. S., Rifqi, M., & Maesaroh, S. (2023). Efektivitas Transfer Learning Dalam Pendeteksian Penyakit Pneumonia Melalui Citra X-Ray Paru Manusia. Jurnal Ilmiah Sains dan Teknologi, 7(1), 43-52.

Wulandari, M., Novriyanti, T., Purwadhi, P., & Widjaja, Y. R. (2025). Implementasi Strategi Transformasi Digital dalam Meningkatkan Kualitas Pelayanan di Rumah Sakit: Studi Kualitatif. Innovative: Journal Of Social Science Research, 5(1), 1415-1427.

Yohannes, R., & Al Rivan, M. E. (2022). Klasifikasi jenis kanker kulit menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133-144.

Downloads

Published

2025-08-21

How to Cite

Munadi, M. (2025). Penerapan Algoritma Deep Learning untuk Deteksi Dini Penyakit dari Citra Medis. Journal of Computer Science and Information Technology, 1(2), 53–59. https://doi.org/10.70716/jocsit.v1i2.259