Analisis dan Perancangan Sistem Informasi Akademik Berbasis Web pada Perguruan Tinggi Swasta
DOI:
https://doi.org/10.70716/jocsit.v1i1.187Keywords:
recommendation system, e-commerce, K-Nearest Neighbor, Cosine Similarity, personalizationAbstract
The rapid development of e-commerce demands a recommendation system that can help users find products that match their preferences. This study aims to implement the K-Nearest Neighbor (K-NN) algorithm in a product recommendation system to improve the personalization of e-commerce services. The K-NN algorithm works by finding similarities in behavior between users based on purchase history, then recommending products based on these similarities. The dataset used in this study consists of user transaction data, product categories, and user data, which are then processed through a cleaning and normalization stage before analysis. Testing was carried out using several variations of K values to find the optimal parameters. The experimental results showed that the value of K = 5 gave the best performance with an accuracy of 87% and an F1-score of 84.5%. In addition, the Cosine Similarity method proved effective in measuring similarities between users in sparse data. The system built is able to provide relevant recommendations with efficient computing time, showing the potential to be applied in small to medium-scale e-commerce platforms. However, the system still has limitations in handling new users (cold-start), so further development with a hybrid approach is recommended. This study shows that the K-NN algorithm is a feasible and efficient approach in user behavior-based product recommendation systems.
Downloads
References
Dewi, R. K., Brata, K. C., & Nabila, N. (2019). Konsistensi ranking pada sistem rekomendasi resep masakan dengan simple additive weighting. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 8(3), 235-240.
Dharmawan, H., Hilabi, S. S., & Karniawulan, I. (2023). Sistem rekomendasi buku dengan metode k-nearest neighbor (k-nn) pada gramedia. ZONAsi: Jurnal Sistem Informasi, 5(1), 16-25.
Fauzi, M. R., Pratama, R. A., Laksono, P., & Eosina, P. (2021). Penerapan Big Data Menggunakan Algoritma Multi-Label K-Nearest Neighbor dalam Analisis Sentimen Konsumen UMKM Sektor Kuliner. Krea-TIF: Jurnal Teknik Informatika, 9(1), 9-20.
Nurida Ahsanti, N. (2016). Implementasi Algoritma K-Nearest Neighbor dalam Sistem Case Based Reasoning untuk Pembentukan Identitas Jawaban Otomatis dan Pencari Kemiripan Jawaban dari Soal-Soal Algoritma (Doctoral dissertation, UIN Sunan Gunung Djati Bandung).
Panjaitan, C. H. P. (2022). Penerapan metode k-nearest neighbor untuk sistem rekomendasi paket wisata laut labuan bajo. Jurnal Elektronika dan Teknologi Informasi, 3(1), 1-7.
Prasetyo, R. B. (2023). Pengaruh E-Commerce dalam Dunia Bisnis. JMEB Jurnal Manajemen Ekonomi & Bisnis, 1(01), 1-11.
Putra, O. E., & Permana, R. (2024). Hybrid Data Mining For Member Determination And Financing Prediction In Syariah Financing Saving And Loan Cooperatives. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 8(2), 309-320
Rachmaniar, A., Widayati, S., & Rokoyah, K. (2025). Sistem Rekomendasi Produk E-Commerce Menggunakan Collaborative Filtering Dan Content-Based Filtering. Journal of Information System, Informatics and Computing, 9(1), 40-54..
Singgalen, Y. A. (2021). Pemilihan metode dan algoritma dalam analisis sentimen di media sosial: sistematic literature review. Journal of Information Systems and Informatics, 3(2), 278-302
Wahyuni, S., Asmuni, A., & Anggraini, T. (2023). Analisis maqashid dan maslahah transaksi e-commerce di Indonesia. Jurnal Riset Pendidikan Ekonomi, 8(2), 124-133.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alfat Arya Adi Candra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







